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Abstract
The � �= 1 generalization of the q-symmetrized Harper equation is discussed in
terms of wavefunctions expressed by Laurent series. Proceeding by recursion
leads to a nontrivial �-dependent generalization of the characteristic energy
polynomial, with a special emphasis on a continuous dependence on the
commensurability parameter. The multiplicity parameter which is responsible
for the amount of coprime realizations of the commensurability parameter is
also accounted for. The present energies have been derived so as to reproduce
particular ones obtained before as limiting cases.

PACS numbers: 72.15.Gd, 71.30.+h, 73.21.−b

1. Introduction

The quantum-mechanical description of Bloch electrons on a two-dimensional (2D) square
lattice with nearest-neighbour hopping threaded by a transversal and homogeneous magnetic
field B is still a quite fascinating problem exhibiting rich structure and unexpected
implementations after nearly half a century [1–9]. The typical equation of this problem
is the quasi-periodic second-order discrete Harper equation (HE) [1]

ϕn+1 + ϕn−1 + 2� cos(nh̄∗ + θ2)ϕn = Eϕn (1)

where n ≡ n1 is an integer and h̄∗ has the meaning of a cyclic parameter. One has h̄∗ = 2πβ,
where β is a commensurability parameter expressing the number of magnetic flux quanta
per unit cell. So β = Ba2e/h, where −e and a denote the electron charge and the lattice
spacing, respectively. The related Brillouin phases are denoted by θl = kla (l = 1, 2), while
the space discretization is performed via xl = nla. The anisotropy parameter � discriminates
between metallic (� < 1) and insulator (� > 1) phases. Equation (1) lies at the confluence of
several research fields, such as superconductivity proceeding in terms of linearized Ginzburg–
Landau equations [10], the d-wave superconductivity with a magnetic field [11], level statistics
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in quantum systems with unbounded diffusion [12], critical quantum chaos [13], anomalous
diffusion of wave packets in quasi-periodic chains [14], localization length and metal–insulator
phase transitions [15] and last but not least the quantum Hall effect [16, 17] and interactions
in Aharonov–Bohm cages [18]. Patterns concerning magnetoresistance oscillations of the 2D
electron gas [19] and especially the quantized Hall conductance [20] can be traced back to
the self-similar nested band energy spectrum of (1), i.e. the celebrated Hofstadter butterfly
[4]. The same concerns the 3D version of (1), as explained recently [21]. Such promising
issues motivate us to perform further generalizations, now by focussing our attention on the
q-symmetrized HE (qSHE) [22–26], which exhibits the symmetry of the quantum group
slq(2). Accordingly, q ≡ q(h̄∗) = exp(ih̄∗/2) plays the role of the pertinent deformation
parameter. This latter equation works at criticality, i.e. at the � = 1 metal–insulator phase
transition point and serves as the middle band description of Bloch electrons. However, a
systematic study of magnetic properties relying on exact energy solutions of (1) as well as
on arbitrary values of the � parameter is still missing. We shall then use this opportunity to
analyse the � �= 1 generalization

i
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z
+ �qz

)
ψ(qz) − i
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q
+

�

z

)
ψ

(
z

q

)
= Eψ(z) (2)

of the qSHE, now in terms of Laurent series (see (4)). This leads to characteristic energy
polynomials depending continuously on both h̄∗ and � (see (22)–(24)), which represents the
main result of this paper.

2. Preliminaries and notations

We would like to say that both (1) and (2) originate from the 2D dispersion law εd =
ε1 cos θ1 + ε2 cos θ2, where ε2 = �ε1. The Hamiltonian concerning (2) is then produced by
applying the Peierls substitution kl → −i∂/∂xl + eAl/h̄ to εd , which works in terms of the
wavefunction

	(�x) = exp(i�k · �x)̃ϕ(x1 + x2). (3)

The vector potential reads Al = (−1)lB(x1 + x2 + αla), which is reminiscent of the ‘chiral’
gauge (see appendix C in [23] and references therein). Repeating the same steps as before
(see, e.g., (A1)–(A10) in [26]) and inserting θ1 = θ2 = π/2 and α2 = −α1 = 1/2 gives (2),
this time by preserving the � parameter as it stands from the very beginning. We then have to
deal with the Laurent series

ψ(z) =
∞∑

n=−∞
cnz

n (4)

where cn = ϕ̃(na) = ϕ̃n and n = n1 + n2. This differs from (1), which relies on the Landau
gauge �A = (0, Bx1, 0), whereas 	(�x) is replaced by exp(ik2x2)ϕ(x1). In other words (1) and
(2) have to be related by a gauge transformation proceeding in conjunction with an additional
inter-connection such that n1 � n. Similar goals have been discussed, but in a rather involved
mathematical manner before [27], by resorting to a generalized formulation of the Bethe-
ansatz. Nevertheless, a transparent conversion of (1) into (2), as done for � = 1 [28], is still
an open problem.

So far the qSHE has been solved by applying a Bethe-ansatz method [22]. In addition,
explicit solutions can also be derived by resorting, e.g., to the q-calculus (for more details see,
e.g., [29, 30]), which results again in typical three-term recurrence relations [26, 31]. To this
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aim rational β = P/Q values of the commensurability parameter have to be invoked, where
P and Q are coprime integers. One would then have q2Q = 1, which also indicates that ϕ̃n

has to fulfil the periodic boundary condition ϕ̃n = ϕ̃n+Q. Fixing Q gives an even number, say
2Ns(Q), of selected P realizations such as Ps ≡ P

(Q)
k , which are located symmetrically with

respect to the middle point P = Q/2. So P
(Q)
k + P

(Q)
Q−k = Q, where k = 1, 2, . . . , Ns(Q).

One has, e.g., Ns(3) = Ns(4) = Ns(6) = 1, Ns(5) = Ns(8) = Ns(10) = 2, but Ns(7) =
Ns(9) = 3 etc. Of course, inserting P = P

(Q)

k yields selected q and h̄∗ realizations having the
form

qs ≡ q
(Q)
k = exp

(
iπP

(Q)
k

/
Q

) = −1
/
q

(Q)
Q−k (5)

and h̄∗
s ≡ h̄

∗(Q)

k = 2πP
(Q)

k

/
Q, respectively. After these preliminaries we have to look for

a reliable continuous extrapolation for which β ∈ [0, 1], which amounts to considering that
P ∈ [0,Q].

3. The parameter dependence of energy polynomials

Now the problem is to derive a characteristic Q-degree energy polynomial P̃ (Q)(E; q,�),

which should produce the energy eigenvalues of (2) via

P̃ (Q)(E; q,�) = 0 (6)

now by looking for a continuous description for which β ∈ [0, 1]. We shall denote the
roots of this polynomial by E = E

(Q)
j (q,�), where j = 1, 2, . . . ,Q. It is understood that

such polynomials are normalized such that the coefficient of EQ is unity. Such inherent
interpolations producing energies depending continuously on h̄∗ have their own interest. First,
they are useful in order to make related symmetry attributes clearer. Second, they serve for
the very evaluation of h̄∗ derivatives of energies, which are of interest for an updated study
of magnetization effects. Explicit energy polynomials have been discussed in detail recently
for � = 1 [26]. These latter results are used as inputs for subsequent � �= 1 generalizations.
Choosing, e.g., Q = 5, we obtain

P̃ (5)(E; q, 1) = E(E4 − E2(8 − �2 − �4 − �6 − �8) + �12 + �10 − 3�8 − �6 − 4�2 + 12)

(7)

in which

�n = �n(q) = qn + 1/qn = 2 cos(nh̄∗/2) (8)

where n is an integer. We have to realize that �n terms get implemented exclusively with
even subscripts, which also means that the h̄∗ dependence of the energy is symmetric with
respect to h̄∗ = π . Furthermore, inserting q = q

(Q)
k into P̃ (Q)(E; q,�) yields Ns(Q) distinct

polynomial realizations such as P̃
(Q)

k (E; �) = P̃ (Q)
(
E; q

(Q)

k ,�
)
. The interesting point is that

these latter polynomials can also be derived identically in terms of the HE by resorting to the
method of the secular equation [5, 32] or to the transfer matrix approach [4, 33]. In the latter
case explicit polynomials have also been derived recently for Q = 1−8 [34]. Generalizations
of Bethe-ansatz equations mentioned before can also be applied [27], but this method is hardly
tractable in practice. Accounting for well-known attributes of the HE, we shall then consider
that the pertinent energy bands are generated by the equation

P̃
(Q)
k (E; �) = � ≡ 2 cos(θ1Q) + 2�Q cos(θ2Q) (9)

where, of course, k = 1, 2, . . . , Ns(Q) and θlQ ∈ [0, 2π]. In particular, one has

P̃
(5)
k (E; �) = P̃

(5)
± (E; �) = E(E4 − 5E2(�2 + 1) + 5(�4 + 1) + 2.5�2(3 ±

√
5)) (10)
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for Q = 5, in which the ‘−’ (‘+’) subscript relies on P
(5)
1 = 1

(
P

(5)
2 = 2

)
. One sees that (7)

and (9) meet together if P = P
(5)
k and � = 1.

4. Deriving the generalized energy polynomial

Next we have to remember that a reliable non-polynomial wavefunction has been proposed
before in order to describe, in this way also, the zero-energy solution to the qSHE [35].
Keeping in mind such results, we shall perform the first step towards solving (2) by integrating
it along the unit circle centred at z = 0 in the complex z-plane. We obtain

i(1 − �)c0 +
i

q
c−2(� − q2) = Ec−1 (11)

by virtue of (4), which shows that we can proceed further in terms of the c−1 = 0 choice.
We have to realize that alternative choices such as c0 = 0 or c−2 = 0 are not suitable, as
they would produce questionable zero-energy solutions if � = q2 and � = 1, respectively.
Inserting (4) into (2), we can again find the three-term recurrence relation

−iEcn = cn+1
(q2n+2 − �)

qn+1
+ cn−1

(�q2n − 1)

qn
(12)

where c0 = 1/(1 − �) and which reproduces (11) via n = −1. Recursions of this kind are
also well known from the description of (quasi-) exactly solvable models (see, e.g., [36]). We
can then obtain

cn = (−i)n
n∏

j=0

qj

q2j − �
R(n) (13)

for n � 0, where R(n) ≡ R(n)(E; q,�) is a polynomial of degree ‘n’ in E. Accordingly

R(n) = ER(n−1) + R(n−2)(��2n−2 − 1 − �2) (14)

where now n � 1, such that R(−1) = 0 and R(0) = 1. The n � −2 counterparts of the above
relationships read

c−n0 ≡ c̃n0 = (−i)n0(−1)n0−1
n0−1∏
j=1

qj

q2j − �
L(n0−2) (15)

where n0 = |n| � 2 and where L(n0−2) is an energy polynomial of degree n0 − 2. This time
we have

L(n0) = EL(n0−1) + L(n0−2)
[
��2n0 − 1 − �2] (16)

where L(n0) ≡ L(n0)(E; q,�), such that L(−1) = 0 and L(0) = 1. Some concrete R(n)

examples are given in table 1 for n = 1–5.
One readily obtains similar results for L(n0) polynomials, as shown in table 2 for n0 =

1–3.
After having arrived at this stage we have to look for a suitable eigenvalue condition for

(2). For this purpose we shall use a symmetry requirement such as

c̃Q = 0(Q)cQ = exp(iπ(Q − 1))

qQ
cQ (17)

for n = n0 = Q and q2Q = 1, which shows that cn = c̃n0 if P = P
(Q)

Q−1 = Q − 1. There are
reasons to say that the ansatz (17) can be viewed as a reasonable generalization of the � = 1
Bender–Dunne symmetry [36], i.e. of the interpretation of the wavefunction as the generating
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Table 1. Explicit R(n) polynomials for n = 1–5.

n R(n)(E; q,�)

1 R(1) = E

2 R(2) = R(2) = E2 − �2 − 1 + ��2

3 R(3) = R(3) = E[E2 − 2(�2 + 1) + �(�2 + �4)]
4 R(4) = E4 − E2[3(�2 + 1) − �(�2 + �4 + �6)]

+ (�2 + 1)2 − �(�2 + 1)(�2 + �6) + �2(�8 + �4)

5 R(5) = E[E4 − E2(4(�2 + 1) − �(�2 + �4 + �6 + �8))

+ 3(�2 + 1)2 − �(�2 + 1)(2�2 + �4 + �6 + 2�8)

+ �2(�12 + �10 + �8 + �6 + 2�4)]

Table 2. Explicit L(n0)(E; q,�) polynomials for n0 = 1–3.

n0 L(n0)

1 L(1) = E

2 L(2) = E2 + ��4 − 1 − �2

3 L(3) = E[E2 − 2(�2 + 1) + �(�4 + �6)]

function of energy polynomials. The behaviour of expansion coefficients for n � Q and
n � Q can also be easily established. Indeed, there are conversion factors such as (±)(n),
such that c̃n = (±)(n)c(n) and (+)(Q) = (−)(Q) = 0(Q), where n = n0 � 2. The ‘+’
(‘−’) superscript proceeds for n � N0 (n � N0), where N0 � 2. For this purpose we have to
apply ‘raising’ relationships such as

(+)(n2) = 1

qn2−N0

∏n2−N0
j=1 (q2N0+2j − �)∏n2−N0−1

j=0 (� − q2N0+2j)
(+)(N0) (18)

proceeding in accord with (11), where n2 > N0 � 2. ‘Lowering’ relationships can be
established in a similar manner as

(−)(n1) = 1

qN0−n1

∏N0−n1−1
j=0 (�q2N0−2j − 1)∏N0−1

j=1 (1 − �q2N0−2j)
(−)(N0) (19)

now for 2 � n1 < N0. We can now obtain

(+)(n) = exp(iπ(n − 1))
(� − q2n)

qn(� − 1)
(20)

and

(−)(n) = exp(iπ(n − 1))
(� − 1)qn

(�q2n − 1)
(21)

by virtue of the N0 = Q-fixing, so that (−)(n) ≡ 1/(+)(−n).
We shall then proceed further by establishing the polynomial one looks for via

P̃ (Q)(E; q,�) = 0, which reflects, of course, the incorporation of the middle band description
needed. So we are ready to make the identification

P̃ (Q)(E; q,�) = T ( c̃Q − 0(Q)cQ) = (1 − �)2

iQ

Q−1∏
j=1

q2j − �

qj
( c̃Q − 0(Q)cQ) = 0 (22)
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Table 3. Explicit P̃ (Q)(E; q,�)-polynomials for Q = 1–5.

Q P̃ (Q)

1 P̃ (1) = E

2 P̃ (2) = E2 − 2(�2 + 1) + �(2 + �2)

3 P̃ (3) = E[E2 − 3(�2 + 1) + �(�2 + �4 + 2)]
4 P̃ (4) = E4 − E2[4(�2 + 1) − �(�2 + �4 + �6 + 2)]

+ �2(�8 + 3�4) + (�2 + 1)[2(�2 + 1) − �(�2 + �4 + �6 + 2)]
5 P̃ (5) = E[E4 − E2(5(�2 + 1) − �(�2 + �4 + �6 + �8 + 2))

− 2�(�2 + 1)(�2 + �4 + �6 + �8 + 2) + 5(�4 + 1)

+ �2(�12 + �10 + �8 + 3�6 + 4�4 + 10)]

in accord with (17), where the T-factor serves solely to normalize the coefficient of EQ in the
energy polynomial to unity. The generalized polynomial is then given by

P̃ (Q)(E; q,�) = R(Q)(E; q,�) − (1 − �)2L(Q−2)(E; q,�) (23)

which reproduces concrete results concerning both P̃ (Q)(E; q, 1) [26]— and P̃
(Q)
k (E,�)—

[34] limits. So we are led to explicit q-dependent energy polynomials as presented in table 3
for Q = 1–5.

Other cases can be treated in a similar manner. So we succeeded in establishing
P̃ (Q)(E; q,�) polynomials producing discrete P̃

(Q)

k (E,�) realizations via q = q
(Q)

k .
Such findings serve to the derivation of extrapolated energies depending continuously on
h̄∗ ∈ [0, 2π] via P ∈ [0,Q].

5. Further properties

The E = E
(Q)
j (q,�) ≡ E

(Q)
j (h̄∗; �) roots of above polynomials can be ordered as

E
(Q)

1 < E
(Q)

2 < · · · < E
(Q)

Q−1 < E
(Q)

Q (24)

such that E
(Q)
j (q,�) = −E

(Q)

Q−j+1(q,�) by virtue of the energy-reflection symmetry [37].

Plotting these energies versus h̄∗ ∈ [0, 2π], we can realize that E
(Q)
j (h̄∗; �) = E

(Q)
j (2π −

h̄∗; �), where q(2π − h̄∗) = −1/q(h̄∗). We have to remark that energies implied by above
polynomials are smooth varying functions of h̄∗ if � �= 1, as shown, e.g., by the solid (� = 2)

energy curves displayed in figure 1, for Q = 4. In contrast, the dotted curves in the same
figure show that the � = 1 description is characterized by symmetrically located contact
points between adjacent levels [26]. Such points are visualized by jumps between lateral h̄∗

derivatives of energies, as shown by the dotted curves in figure 2. Thus we can observe local
cusplike maxima (minima) for energy curves located below (above) the E = 0 axis. Except
the E = 0 levels implied by odd Q values if j = (Q + 1)/2, we have E

(Q)
j ∼ |� − 1| for

h̄∗ = 0 and h̄∗ = 2π as well. This behaviour is illustrated in table 4 for Q = 2–5.
There is E

(Q)
j (1,�) = E

(Q)
j (−1,�), where the ± signs quoted in table 4 are well

understood in terms of (24). We see that the h̄∗ = 0 limits displayed above are expressed by
irrational numbers, the complexity of which increases with Q. Such results are able to serve
as signatures of hierarchical attributes of the energy-spectrum, this time for � �= 1.

It is obvious that by now ∂E
(Q)

j

/
∂h̄∗ derivatives can be easily established, as displayed by

the solid curves in figure 2, for Q = 4. In particular, e.g., ∂E
(4)
j

/
∂h̄∗ = εj/

√
3 for h̄∗ = π/2

and � = 1, but

∂E
(4)
j

/
∂h̄∗|h̄∗=π/2 = εj [γ1(δj,1 + δj,4) + γ2(δj,2 + δj,3)] (25)

if � = 2, where γ1 ∼= 0.758 923, γ2 ∼= 0.561 516 and εj = 1 (−1) for j = 1, 2 (3, 4).
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Figure 1. The h̄∗ dependence of the four Q = 4 energy levels for � = 1 (the solid curves
approaching the E = 0 axis) and � = 2 (dotted curves).

Figure 2. The h̄∗ dependence of the derivatives E′ = ∂E
(4)
2 (h̄∗; 1)/∂h̄∗ (solid curve) and

E′ = ∂E
(4)
2 (h̄∗; 2)/∂h̄∗ (dotted curve). We find that jumps located at h̄∗ = 0, 2π/3, 4π/3

and 2π if � = 1, but the derivative is continuous for � = 2.

Table 4. The h̄∗ = 0 limit of E
(Q)
j (q,�) energies for Q = 2–5.

Q E
(Q)
j

2 E
(2)
j (1,�) = ±√

2|� − 1|
3 E

(3)
j (1,�) = ±√

3|� − 1|
4 E

(4)
j (1,�) = ±

√
2 ± √

2|� − 1|
5 E

(5)
j (1,�) = ±

√
5 ± √

20|� − 1|

The � dependence of present energies is also of interest. Choosing once again Q = 4
and inserting, e.g., h̄∗ = 0.005, we find that energies displayed versus � look like straight
lines exhibiting the tendency to meet together at � = 1 and E = 0, as indicated by the
straight lines in figure 3. More precisely, there is ∂E

(4)

3

/
∂� ∼= 0.764 54 sgn(� − 1) and

∂E
(4)

4

/
∂� ∼= 1.845 74 sgn(� − 1), where h̄∗ = 0.005. However, the dotted curves in figure 3

show that this behaviour is increasingly lost for larger h̄∗ values, now for h̄∗ = 0.2.
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Figure 3. The � dependence of the four Q = 4 energy levels for h̄∗ = 0.005 (solid lines) and
h̄∗ = 0.2 (dotted curves).

Without considering further details, we have to realize that the wavefunction can be
reduced to a rational function by virtue of the periodicity cn±2Q = cn of expansion coefficients.
Accordingly, one has (±)(n ± 2Q) = (±)(n). The whole interval n ∈ I ≡ [2,∞)

can then be expressed as a union over periodicity intervals such as I = ⋃∞
i=0 Ii , where

Ii = [2 + 2iQ, (2i + 2)Q + 1] and i = 0, 1, 2, . . . . Then monomials such as zn and 1/zn

get multiplied by a series such as S = 1 + z2Q + z4Q + · · ·, which can be summed up to
S = 1/(1 − z2Q) if |z| < exp(1/2Q). Under such circumstances the wavefunction (4) can be
expressed as

ψ(z) = ψ(Q)(q, z) = 1

1 − �

(
1 − iqEz

q2 − �

)

+
1

1 − z2Q

2Q+1∑
n=2

cn

(
zn +

1

zn
((+)(n)θ(n − Q) + (−)(n)θ(Q − n))

)
(26)

in which θ(0) = 1/2. It is clear that

ψ(z) → 1

1 − �
+ z(c1 − c2Q+1) = 1

1 − �
(27)

if z → ∞. This indicates that the normalization interval should be finite, unless the
wavefunction is renormalized. Realizations such as ψ

(Q)

k,j (z) can also be obtained immediately

by inserting q = q
(Q)

k and E = E
(Q)

j (q,�).
A further point concerns the Aubry duality [32, 38], which has been discussed in some

detail in terms of (1). Now we are in a position to derive a reliable manifestation of this duality
by using, at least for the moment, the Fourier transform

ψ(z) =
∫ ∞

−∞
�(s) exp(isz) ds. (28)

Indeed, inserting (28) into (2) yields the second-order differential-difference equation

E
d

ds
�(s) = 1

q
�

(
s

q

)
− �

d2

ds2
�

(
s

q

)
− q��(qs) +

d2

ds2
�(qs) (29)

under the assumption that surface terms are zero. We realize immediately that the
E = E(q,�) solution can be rewritten equivalently as −�E(1/q, 1/�), where, of course,
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E(q,�) = E(1/q,�). Thus we found a typical manifestation of the Aubry duality, with the
understanding that more intricate convergence properties are left aside.

6. Conclusions

In conclusion, we succeeded in establishing reliable � �= 1 generalizations of characteristic
energy polynomials concerning the Harper equation towards continuous values of the
commensurability parameter. This opens the way to establish h̄∗ derivatives of energies,
which have their own intrinsic interest. For this purpose (2) has been solved in terms of
Laurent series by using a generalized Bender–Dunne ansatz as given by (17). Moreover,
a rational reduction of such series can also be done, as shown by (26). The multiplicity
parameter k = 1, 2, . . . , Ns(Q), which seems to have been ignored before, has also been
accounted for. The energy polynomials referred to above produce discrete realizations via
h̄∗ ≡ h̄

∗(Q)
k . So we are now in a position to perform updated studies of magnetic properties

with regard to both metallic and insulator phases. For this purpose fixed Q-values can be
invoked, in which case the density of states can be expressed again in terms of complete
elliptic integrals of the first kind [5, 34, 39]. We emphasize that present results are favoured on
general theoretical grounds, but we have to be aware that other versions concerning continuous
extrapolations of energy polynomials could also be established by resorting to transfer matrices
or to the method of the secular equation. Such alternative results identically reproduce the
present ones in selected q = q

(Q)

k points, as one might expect. Then the insensitivity of
thermodynamic properties with respect to such versions remains to be clarified in several
respects. A similar behaviour concerns the Hall conductance, which is (in contrast with the
edge states) the same both in commensurate and incommensurate cases [40]. We can then
say that present extrapolations towards continuous values of the commensurability parameter
can also be viewed as expressing inherent incorporations of incommensurability effects, i.e.
of irrational values of the P parameter.

Acknowledgments

I would like to thank H D Doebner, F Gebhardt, I Cotaescu and W Bestgen for useful
discussions, as well as to CNCSIS/Bucharest for financial support.

References

[1] Harper P G 1955 Proc. Phys. Soc. A 68 874
[2] Rauh A 1975 Phys. Status Solidi b 69 K9
[3] Azbel M Ya 1964 Sov. Phys.–JETP 19 634
[4] Hofstadter D R 1976 Phys. Rev. B 14 2239
[5] Wannier G H, Obermair G M and Ray R 1979 Phys. Status Solidi b 93 337
[6] Wilkinson M 1986 Proc. R. Soc. A 403 135
[7] Sokoloff J B 1985 Phys. Rep. 126 189
[8] Rammal R and Bellissard J 1990 J. Phys. (Paris) 51 1803, 2153
[9] Hiramoto H and Kohmoto B 1992 Int. J. Mod. Phys. B 6 281

[10] Wang Y Y, Pannetier B and Rammal R 1987 J. Physique 48 2067
[11] Morita Y and Hatsugai Y 2001 Phys. Rev. Lett. 86 151
[12] Geisel T, Ketzmerick R and Petschel G 1991 Phys. Rev. Lett. 66 1671
[13] Evangelou S N and Pichard J L 2000 Phys. Rev. Lett. 84 1643
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